Laser joining in the spotlight

May 1, 2018
Over the past month, I’ve had two extended discussions about fiber laser welding in the automotive industry with interested investors.
New Image 2

Over the past month, I’ve had discussions about fiber laser welding in the automotive industry with interested investors. Curious, because this is a specific subject that rarely comes up from that sector, except once in a while around quarterly-earnings report time when the CEO of a leading fiber laser company mentions it.

These conversations were wide-ranging, so when I was asked about laser welding in small-vehicle assembly plants, I had an opportunity to speculate on the future for welding in general in the auto industry. I won’t go into details of my appraisal—however, a portion of my remarks dealt with the automotive industry’s increased use of non-ferrous and non-metallic materials in vehicle body-in-white (BIW) and light truck bodies.

I speak with a modicum of authority on this subject based on past experiences trying to introduce laser welding to intransigent automotive manufacturing and production engineers—before that, I pushed programmed TIG welding, and before that, articulated resistance spot welders.

That automotive manufacturing world has changed for the better, as a new generation of body engineers, driven by onerous government requirements for fuel economy, seem to be free to consider aluminum, lightweight steels, and non-metals such as engineered plastics and composites.

Plastic body components are now used all over the auto world, even on premium cars like Audi, an early aluminum body user. The automaker is now using a carbon fiber-reinforced plastic (CFRP) rear panel as the largest component in the occupant cell of the new A8 sedan.

Heresy in lightweight trucks—an aluminum F-150 pickup truck bed at Ford, the recipient of an expensive pro-steel bed advertising campaign by Chevrolet—is being followed by GM’s 2019 GMC Sierra Denali carbon-fiber composite cargo bed. Do I sense some hypocrisy here?

Don’t throw in the towel, welding enthusiasts—the future has a far-away horizon and there are a lot of tough, lightweight steel parts in BIW designs in the near-term. But a caution—other than some current work on aluminum or steel to composites joining, most non-metal body parts are mechanically joined or bonded.

And there is still replacement for body resistance spot welding being pushed by IPG Photonics. I had this in my sights long before fiber lasers came on the scene because the sheer number of on-line resistance spot welders that fiber lasers could replace (3:1)—some say at least several thousand per year—supports a nice piece of fiber laser business.

The theme of this issue is laser welding, so Vijay Kancharla and colleagues at IPG Photonics introduce laser beam wobbling as a solution to some difficulties in welding aluminum and copper (see article). Laser welding monitors, coupled with machine learning methods, can improve process results, writes Mark Rodighiero of AMADA MIYACHI AMERICA (see article), and Ian Jones of Laserweld Plastics explains the pros and cons of laser joining polymer materials (see article). In a bit of a twist, Kenneth Vartanian and Pascal Pierra (Optomec) seize on process definition as it applies to additive manufacturing (see article), and Evgeny Molchanov (Rena Solutions) leads us through the rejuvenation of the Russian laser market (see article).

Although welding—a very part-specific process—now represents <20% of all industrial laser revenues, it is fertile ground for high growth rate in the coming years, as evidenced by the features in this issue.

David A. Belforte
[email protected]

About the Author

David Belforte | Contributing Editor

David Belforte (1932-2023) was an internationally recognized authority on industrial laser materials processing and had been actively involved in this technology for more than 50 years. His consulting business, Belforte Associates, served clients interested in advanced manufacturing applications. David held degrees in Chemistry and Production Technology from Northeastern University (Boston, MA). As a researcher, he conducted basic studies in material synthesis for high-temperature applications and held increasingly important positions with companies involved with high-technology materials processing. He co-founded a company that introduced several firsts in advanced welding technology and equipment. David's career in lasers started with the commercialization of the first industrial solid-state laser and a compact CO2 laser for sheet-metal cutting. For several years, he led the development of very high power CO2 lasers for welding and surface treating applications. In addition to consulting, David was the Founder and Editor-in-Chief of Industrial Laser Solutions magazine (1986-2022) and contributed to other laser publications, including Laser Focus World. He retired from Laser Focus World in late June 2022.

Sponsored Recommendations

Request a quote: Micro 3D Printed Part or microArch micro-precision 3D printers

April 11, 2024
See the results for yourself! We'll print a benchmark part so that you can assess our quality. Just send us your file and we'll get to work.

Request a free Micro 3D Printed sample part

April 11, 2024
The best way to understand the part quality we can achieve is by seeing it first-hand. Request a free 3D printed high-precision sample part.

How to Tune Servo Systems: The Basics

April 10, 2024
Learn how to tune a servo system using frequency-based tools to meet system specifications by watching our webinar!

Precision Motion Control for Sample Manipulation in Ultra-High Resolution Tomography

April 10, 2024
Learn the critical items that designers and engineers must consider when attempting to achieve reliable ultra-high resolution tomography results here!

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!