International collaboration designs, builds low-cost ventilator for COVID-19 patients

April 10, 2020
The laser-cut Bag Valve Mask ventilators are designed to be used by medical staff, first responders, nurses, doctors, and carers as a temporary or emergency breathing aid for those with COVID-19.

According to The Engineer (April 7, 2020), a Bag Valve Mask (BVM) ventilator serves two patients simultaneously with a ‘flat-pack’ design, meaning it can be quickly laser-cut and manufactured at scale at a cost of under £75 ($100) per unit.

The ventilator can be easily adjusted and updated as required, and can be linked to an oxygen generator and positive end expiratory pressure (PEEP) valves and filters. The units derive power from standard wall adapters or 12 V vehicle batteries. 

The BVMs are designed to be used by medical staff, first responders, nurses, doctors, and carers as a temporary or emergency breathing aid for those with COVID-19. 

The ventilator device works with ‘positive displacement,’ forcing air into the patient’s lungs, a process that has to be controlled to ensure the right amount of air goes in at the right rhythmic pace, or ‘tidal volume.’ 

The BVM ventilator can ventilate two patients at the same respirator rate, but with independent tidal volume control, or ventilate one patient at twice the respirator rate, allowing for alternating tidal volumes. Cranfield added that the tidal volume control is mechanically set using a bumper and slider, and the respirator rate is set by using a potentiometer connected to a DC motor and gear box. 

Professor Leon Williams, head of the Centre for Competitive Creative Design (C4D) at Cranfield University, joined forces with Associate Professor Shannon Yee from the Georgia Institute of Technology (Georgia Tech; Atlanta, GA) to rapidly design and build the low-cost and robust makeshift ventilator. 

“We focused on creating something that can be mass-produced using water-jet or laser cutting, and modular in design to make it easy to assemble and switch out parts. Within five days of getting the brief, an initial design from the Cranfield team was sent to Georgia Tech to test,” Professor Williams said. 

“We focused on creating something that can be mass-produced using water-jet or laser cutting, and modular in design to make it easy to assemble and switch out parts,” Professor Williams said. “Within five days of getting the brief, an initial design from the Cranfield team was sent to Georgia Tech to test.”  

A small batch of the devices has already been assembled for testing. The research team intends to make plans for the device to be available to manufacturers as quickly as possible. 

CONTINUE READING >>>

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!