LIGHT MICROSCOPY/CELL BIOLOGY: $250 DIY light microscope tracks cell motility

March 23, 2015
Light microscopy systems for measuring cell motility can cost hundreds of thousands of dollars. But a PhD student at Brunel University London's College of Health and Life Sciences built his own inverted microscope for an estimated $250 by adapting three low-cost USB microscopes he purchased online.

Light microscopy systems for measuring cell motility can cost hundreds of thousands of dollars. But a PhD student at Brunel University London's College of Health and Life Sciences (Uxbridge, England) built his own inverted microscope for an estimated $250 by adapting three low-cost USB microscopes he purchased online.

The finished Low-Cost Motility Tracking System (LOCOMOTIS) adapted by Adam Lynch to study snail immune systems.

In learning about cell motility tracking, Adam Lynch, a student in the College's Institute for the Environment, learned how a snail's immune system responds to chemical pollutants present in water, which might influence transmission of Schistosome parasites to humans (the parasites can induce chronic infection of the urinary tract or intestines in humans). Lynch and his collaborators needed more than one inverted microscope to run multiple tests, but wanted to avoid the high costs associated with having more than one system.

Lynch realized that the three Veho VMS-004D 400x USB microscopes (each with 1.3 Mpixel CMOS image sensors) he had purchased could be clamped upside down on a table (for stability) to produce the same images that a far more expensive inverted microscope can. His system, which he calls the Low-Cost Motility Tracking System (LOCOMOTIS), involved creating a 3D model using an open-source software program, followed by its frame and stage construction. For illumination, an external LED strip light was used due to its low heat emission and intensity, which helps reduce stress to the cells.1

Lynch points out that getting the right angle of lighting enabled the LOCOMOTIS system's success. When he turned off the USB microscopes' onboard LED illumination and instead used external illumination, he found that he could see the cells quite clearly—the system allowed him to observe cells that measured about 50 µm long.

The next step for Lynch and his collaborators is to determine additional utilities for LOCOMOTIS, and to lower its cost even further.

1. A. E. Lynch, J. Triajianto, and E. Routledge, PLoS One, 9, 8, e103547 (2014).

About the Author

Lee Dubay | Managing Editor

Lee Dubay is managing editor for Laser Focus World. She is a seasoned editor and content manager with 20 years of experience in B2B media. She specializes in digital/print content management, as well as website analytics, SEO, and social media engagement best practices. 

Sponsored Recommendations

Melles Griot® XPLAN™ CCG Lens Series

March 19, 2024
IDEX Health & Science sets a new standard with our Melles Griot® XPLAN™ CCG Lens Series fluorescence microscope imaging systems. Access superior-quality optics with off-the-shelf...

Spatial Biology

March 19, 2024
Spatial Biology refers to the field that integrates spatial information into biological research, allowing for the study of biological systems in their native spatial context....

Fluorescent Protein Optical Imaging Considerations

March 19, 2024
What factors should you consider when your incorporate fluorescent proteins in an optical imaging application? Learn more.

Custom-Engineered Optical Solutions for Your Application

March 19, 2024
We combine advanced optical design and manufacturing technology, with decades of experience in critical applications, to take you from first designs to ongoing marketplace success...

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!