FutureAM project discovers superalloys for additive manufacturing

May 24, 2019
A team of engineers has been refining laser powder buildup welding over decades to allow more materials to be applied in additive manufacturing.

Engineers at the Fraunhofer Institute for Material and Beam Technology (Fraunhofer IWS; Dresden, Germany) have refined laser powder buildup welding over decades to allow more materials to be applied in additive manufacturing. In this procedure, a system feeds various filler powders into a process zonethere, a laser melts the powder and deposits it on a workpiece surface. As a result, the desired part is generated in a layer by layer process.

"One of the advantages of this additive procedure is that we can adapt the process very flexibly to the requirements of high-performance materials," explains Michael Müller, Fraunhofer IWS project administrator. In this way, it is also possible, for example, to print nickel-based alloys that are difficult to weld and process using traditional methods. However, this only works if the temperature, powders, feed rate, and other parameters are correct.  

Within the framework of Fraunhofer's futureAM  Next Generation Additive Manufacturing project, Fraunhofer IWS engineers are recording numerous sensor data with very high sampling rates for this purpose. However, this generates large amounts of data (big data) that are difficult for people to understand.
Nevertheless, Fraunhofer experts use artificial intelligence (AI) and machine learning, which are also being studied in a working group led by Prof. Karol Kozak, head of image processing and data management at Fraunhofer IWS, to find hidden connections in these signal floods. For example, special analysis algorithms link the measured sensor values with the institute's powder database and evaluate further process parameters and gradually, the machines learn to make their own decisions. For instance, they can determine for themselves whether a slight rise in temperature in the welding process can be tolerated or whether they have to take immediate countermeasures before the entire component ends up as waste. 

Aircraft engines, for example, could work more efficiently and at higher temperatures if most materials were not already failing at temperatures of around 1200°. Admittedly, there are materials that can withstand such high temperatures, but they are very cost-intensive and difficult to process using traditional methods. Additive manufacturing is intended to solve this dilemma and could help to achieve a more cost-effective design. 

"Using laser powder buildup welding, we can feed different powders into the process zone simultaneously or successively with precisely adjustable feed rates," Müller explains. "Designing an entire component out of a singular material is not very effective since the component is not exposed to the same heat at all points."

In the futureAM project, Fraunhofer IWS and five other Fraunhofer Institutes are pooling this technology and further expertise to push additive manufacturing to a new level. By summer 2020, they want to integrate all their expertise into the additive manufacturing process chain and demonstrate it on realistic components. 

For more information, please visit iws.fraunhofer.de.

About the Author

Industrial Laser Solutions Editors

We edited the content of this article, which was contributed by outside sources, to fit our style and substance requirements. (Editors Note: Industrial Laser Solutions has folded as a brand and is now part of Laser Focus World, effective in 2022.)

Sponsored Recommendations

Achieving Ultralow-Loss Photonics Array Alignment

Feb. 23, 2024
Two- and three-dimensional photonics arrays are commonly used for coupling light in photonic integrated circuits. With the increasing demand for ultralow-loss transmission in ...

Control Techniques in Laser Processing

Feb. 23, 2024
A laser processing tool is only as good as the motion equipment underneath it. One must first consider design characteristics of a motion platform, and second, advanced control...

High-Precision Laser Processing for Medical Device Manufacturing

Feb. 23, 2024
Laser processing has been used for decades to manufacture tubular medical devices, such as stents, valves, and vascular grafts. However, achieving the precision that is necessary...

Selecting Optimal Positioning Equipment for Laser Direct-Write Processes

Feb. 23, 2024
Choosing the optimal automation equipment for a given process requires a thorough understanding of the process parameters and the effects of positioning errors on the results....

Voice your opinion!

To join the conversation, and become an exclusive member of Laser Focus World, create an account today!